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Abstract. Information networks such as the scientific literature and the Web have been studied extensively
by different communities focusing on alternative topological properties induced by citation links, textual
content, and semantic relationships. This paper reviews work that brings such different perspectives to-
gether in order to build better search tools and to understand how the Web’s scale free topology emerges
from author behavior. I describe three topologies induced by different classes of similarity measures, and
outline empirical data that allows us to quantify and map their correlations. The data is also used to study
a power law relationship between the content similarity between two documents and the probability that
they are connected by citations or hyperlinks. Such finding has led to a remarkably powerful growth model
for information networks, which simultaneously predicts the distribution of degree and the distribution
of content similarity across pairs of documents — Web pages connected by links and scientific articles
connected by citations.

PACS. 89.20.Hh World Wide Web, Internet – 89.75.-k Complex systems

1 Introduction

Document networks have many different types of infor-
mation, which define as many topological spaces. If we
focus on the connections between nodes we see a directed
network with edges represented by citations between doc-
uments, or hyperlinks between Web pages. Researchers
in the field of bibliometrics [1] have studied such citation
networks since the 1960’s yielding local similarity metrics
such as co-citation and bibliographic coupling, and study-
ing global properties such as clustering and degree distri-
butions. Many of these properties have been rediscovered
— along with new observations and insight — through
the recent resurgence of interest in the area of complex
networks, fueled by the popularity of large decentralized
networks such as the Web. Now physicists, mathemati-
cians and computer scientists are studying information
networks with the tools of statistical physics and graph
theory [2–4].

Other networks can be built from information in doc-
ument collections. The coauthorship relationship can be
used to build edges between nodes that represent authors.
Coauthorship networks have been found to possess many
of the critical properties of complex networks, such as
small-world and scale free degree distributions [5]. The dy-
namic relationship between citations, coauthorship, and
other collaboration networks (e.g., funded projects) in
document collections is also being studied to understand
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how the dynamics of these topologies affect one an-
other [6].

While the above approaches focus on edges, the
“nodes” in information networks are rich objects. Docu-
ments such as articles and Web pages contain text, which
lends itself to similarity measurements and consequently
to the study of interesting topological characteristics such
as density and clustering. At the simplest level, one can
obtain a network by creating edges between documents
based on word cooccurrence, then find clusters of related
words. This text mining approach is being used to discover
unknown relationships between genes, diseases and drugs
based on the biomedical literature [7,8].

Researchers in the field of information retrieval (IR)
have been active for several decades in modeling and ana-
lyzing more sophisticated lexical topologies generated by
words. In the vector space model [9] a document is seen as
a bag of words (the same applies for any piece of text such
as a page, paragraph, or query). The relative frequency of
words, rather than their position, is used to extract a sta-
tistical representation of the document. One can build a
vector space where each dimension corresponds to a pos-
sible term. In this space a document is a vector, typically
a sparse one. Various steps are often taken to improve
on the basic model. These include removing very com-
mon noise terms in a stop list (“the,” “at,” etc.) [10], con-
flating terms into sets of semantically related words (e.g.
“student” and “study”) by stemming algorithms [11] and
use of thesauri [12], and weighting frequencies to discount
terms based on their general abundance. In a common
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weighting scheme called TFIDF (term frequency · inverse
document frequency) the coordinate of a document d cor-
responding to a term t is computed by multiplying the
frequency of t in d by a discrimination factor based on the
number of documents that contain t [13,14].

Given the sparsity of document vectors, traditional
metric distances such as the Euclidean and other L-norms
are inadequate at capturing the relationships between doc-
uments because they are biased by document length —
two short documents tend to appear more similar to each
other that two long documents just because of the many
zero-weight elements. Two main approaches are taken to
cope with this issue. One is to normalize document length;
this has led to the use of similarity measures that focus
only on the non-zero elements. The other approach is to
use statistical dimensionality reduction techniques, such
as the popular latent semantic analysis in which one ex-
tracts the terms corresponding to the principal eigenvalues
of the term-document frequency matrix [15]. Other tech-
niques, outside of the scope of this paper, include docu-
ment representations that preserve the relative positions
of words to compute proximity, and semantic ontologies
of terms such as wordnet [16].

Applications of these lexical topologies are found in
document retrieval (e.g., search engines), filtering (e.g.,
spam detection), and classification (e.g., topic tracking).
The aim of the vector space model and all other lexi-
cal topology techniques is to support such applications
by approximating semantic relationships — “a document
is related to another document” or “a page is relevant
to a query” — from lexical ones. The ultimate goal is
to build systems that can automatically establish seman-
tic relationships from measurable quantities such as word
frequencies. In order to test such systems, IR researchers
often ask human subjects to assess the relevance of docu-
ments with respect to given queries. We can also resort to
collections of documents that have been manually classi-
fied by human experts. For example articles may be clas-
sified into an encyclopedia’s predefined topic tree, or Web
pages into directories managed by portals companies. The
resulting classification ontologies are networks that define
semantic topologies.

From an applied perspective, a fundamental goal of in-
formation networks research should be to analyze the rela-
tionship between semantic topology and other topologies
based on observables such as text and links, or in other
words, to infer semantic relationships automatically. This
goal is becoming both more important and more difficult
due to the popularity, omnipresence, size, and dynamic
nature of the Web. If we knew how to quickly identify,
among 10 billion Web pages, the five most useful pages
for a user based on a query, we could build the perfect
search engine.

This paper reviews an empirical body of work in which
I have quantitatively related the network topologies de-
rived from citations and hyperlinks with a lexical topol-
ogy derived by text analysis and a semantic topology de-
rived from human classification of documents. In Section 2
the three topologies are defined formally. Section 3 out-

lines how lexical and semantic similarity decay across Web
links. In Section 4 I report on a brute-force approach used
to directly measure and map the correlations between sim-
ilarity measures in the three topologies. Section 5 summa-
rizes the implications of the empirical observations of Sec-
tion 4 for modeling the evolution of information networks.

The work reviewed here has not appeared in publica-
tions typically targeted at the physics community. Since
statistical physicists are taking a leading role in the study
of complex networks, including information networks, it is
hoped that the methodologies and results reviewed here
can foster stronger collaborations between this commu-
nity and others that are actively studying information net-
works from both theoretical and applied perspectives.

2 Three topologies

Let us define similarity measures corresponding to lexical,
link, and semantic topologies. One can of course define
any number of such measures. Here we focus for the three
topological spaces on metrics selected on the basis of var-
ious criteria: (i) they are already established and widely
used in some scientific community, (ii) they are easy to
measure from publicly available data, and (iii) they have
desirable mathematical properties.

We also assume that a similarity measure σ can be
defined from a distance measure δ (and vice versa) using
the relationship:

σ =
1

δ + 1
. (1)

2.1 Lexical similarity

For lexical or content similarity let us turn to the vector
space model. A document, query, or Web page is repre-
sented by a vector d = (wd,1 · · ·wd,Nt) where Nt is the
number of terms in the collection, i.e. the dimensionality of
the space. An element wd,t is called weight of term t in doc-
ument d. There are many weighting schemes used in IR.
The simplest option is term frequency (TF): wd,t = f(d, t),
the frequency of t in d. In Section 1 I discussed TFIDF:
wd,t = f(d, t) · i(t) where i(t) is the inverse frequency of
t in the collection. Several forms have been proposed for
the function i(), for example

i(t) = 1 + log
(

Nd

Nd,t

)
(2)

where Nd is the number of documents in the collection and
Nd,t is the number of documents in the collection that con-
tain term t [13]. The use of TFIDF requires global knowl-
edge of the collection, which obviously is not available in
the case of the Web. In the work reviewed in the next
sections I have used either TF of TFIDF weighting, de-
pending on the data available. However, in all cases stop
words are eliminated [10] and other terms are conflated
using a standard stemming algorithm [11].
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Once the vector space representation of documents is
established, we can define a content similarity between
two document vectors d1 and d2 as:

σc(d1,d2) =
‖d1 · d2‖

‖d1‖ · ‖d2‖ . (3)

This is the cosine similarity function, which is tradition-
ally used in IR because it does not suffer from the di-
mensionality bias that makes L-norms inappropriate, as
discussed in Section 1. It is illustrated in Figure 1A.

2.2 Link similarity

The network topology of hyperlinks or citations (links for
short) defines a natural distance metric:

δl(d1, d2) = min(|p(d1 → d2)|, |p(d2 → d1)|) (4)

where p(u → v) is the shortest path from u to v (links are
directed edges) and |p| represents the length of path p.
This distance measure will be used in Section 3. However,
it has limitations. In some cases there may be no path,
for example between two articles in a citation network.
Or there may be no directed path, even if a path exists
using undirected edges. In other cases a path may exist but
shortest paths may not be computable due to incomplete
knowledge of network connectivity. This latter problem is
typical for the Web. Even a relatively large sample with
millions of pages is likely to contain many pairs of pages
for which equation (4) would not allow to define δl.

A more localized link similarity measure is therefore
necessary. Let us define the link neighborhood Ud of a
document d as the set of documents that are linked from
d or link to d, plus d itself. We can then define a local link
similarity from a simple Jaccard coefficient:

σl(d1, d2) =
|Ud1 ∩ Ud2|
|Ud1 ∪ Ud2|

. (5)

Local link similarity measures the degree of clustering be-
tween the two pages. To see why, note that if a page has
a high clustering coefficient, then it must have a high link
similarity to its neighbors. The measure is illustrated in
Figure 1B. A high value of σl indicates that the two pages
belong to a tightly clustered set of pages. Related mea-
sures are often used in link analysis to identify a com-
munity around a topic. If σl(d1, d2) > 0 there exists an
undirected path between d1 and d2 of length � ≤ 2 links.
The higher σl, the greater the probability that there is
a directed path between the two pages, which could be
navigated by a user or crawler. Note that σl is also akin
to the well known co-citation and bibliographic coupling
measures used in the bibliometrics community.

2.3 Semantic similarity

The traditional IR approach to estimating the semantic
relationship between two objects (e.g., a query and a doc-
ument) is to conduct a user study, asking subjects to es-
timate the degree of relatedness between the two objects.

Fig. 1. Illustrations of similarity measures in three topologies.
(A) Content similarity: the terms shared by the two documents
are measured by the cosine of the angle between the two cor-
responding word vectors. (B) Link similarity: the clustering of
the two documents is measured by the number of their shared
neighbors (dark gray pages), relative to the size of the union of
their neighbors (light gray sets). (C) Semantic similarity: the
meaning shared by the two documents or pages is measured by
the entropy of their lowest common ancestor topic (light gray
subtree), and the meaning differentiating the two is measured
by the entropy of their respective topics (dark gray subtrees).

For example, subjects might be asked to rank a set of
documents according to their relevance to a given tar-
get query. While users may have their own bias, this is
considered the golden standard for IR system evaluation.
However, user assessments are very expensive and time
consuming for large collections. The approach is infeasi-
ble when one needs to consider all pairs of documents in
a large set, as is required to measure the correlations be-
tween semantic similarity and other similarity measures.
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Fortunately, we can rely on large sets of pre-classified
documents without renouncing the golden standard of
human assessments. Digital libraries are often marked
up with descriptors that categorize articles into some
ontology. Examples of these include the ACM Comput-
ing Classification System, the AIP Physics and Astron-
omy Classification Scheme, and the NLM Medical Subject
Headings and Classification. For Web pages, large direc-
tories have been built manually. The simplest version of
this idea is a hierarchical taxonomy with pages classified
at nodes, which correspond to categories or topics. The
best known examples of Web directories are Yahoo1 and
the Open Directory Project2 (ODP). The latter is main-
tained by a large number of volunteer editors, makes its
data publicly and freely available, and does not have a
strong commercial bias — there is no mechanism to pay
in order to be listed. These directories are large, with hun-
dreds of thousands of topics and millions of pages. Their
ontologies also have more complex structures than a sim-
ple hierarchical taxonomy. There are symbolic links be-
tween topic nodes in different branches as well as links
describing non-hierarchical relationships. These result in
complex networks that, unlike trees, have weighted edges
and cycles.

In the simple case of a tree ontology, we can define
a semantic similarity between two documents using the
entropy of the documents’ respective topics:

σs(d1, d2) =
2 log Pr[t0(d1, d2)]

log Pr[t(d1)] + log Pr[t(d2)]
(6)

where t(d) is the topic node containing d in the ontol-
ogy, t0 is the lowest common ancestor topic for d1 and
d2 in the tree, and Pr[t] represents the prior probability
that any document is classified under topic t. This mea-
sure is illustrated in Figure 1C. In practice Pr[t] can be
computed offline for every topic t in the tree by counting
the fraction of documents stored in the subtree rooted at
node t, out of all the pages in the tree. The path from the
root to t0 is a measure of the meaning shared between the
two documents, and therefore of what relates them. Con-
versely the paths between t0 and the two document topics
is a measure of what distinguishes the meanings of the two
documents. This semantic similarity measure is a straight-
forward extension of the information-theoretic similarity
measure [17], designed to compensate for the fact that
the tree can be unbalanced in terms of both its topology
and the relative entropy of its nodes. For a perfectly bal-
anced tree in which all documents are evenly stored at
the leaves, σs is equivalent to the familiar tree distance
measure (normalized length of shortest tree path).

In Section 4 we use the semantic similarity definition of
equation (6) for Web pages based on ODP data. Sampling
pages from the ODP guarantees that semantic informa-
tion for each page is available from human editors. How-
ever, as discussed above, the ODP ontology is not a simple
tree. For example, the “Business” category is subdivided

1 http://www.yahoo.com
2 http://dmoz.org

by types of organizations (cooperatives, small businesses,
major companies, etc.) as well as by areas (automotive,
health care, telecom, etc.). Furthermore, the ODP has var-
ious types of cross-reference links between categories, so
that a node may have multiple parent nodes and be reach-
able from the root following multiple paths. How to extend
the definition of equation (6) to this graph is the object
of ongoing study. In the work reviewed here, the ODP on-
tology is reduced to a tree by disregarding cross-reference
links and other links that disrupt the simple hierarchical
topology. This introduces a form of noise into this mea-
sure — two Web pages may be more strongly related than
the measure indicates.

3 Clustering

In this section I review how lexical and semantic rela-
tionships decay across link distance, i.e., how lexical and
semantic similarity are autocorrelated in link space [18].

Link distance is defined by equation (4), and shortest
paths are discovered by an exhaustive breadth-first crawl.
The large fan-out of Web pages imposes a practical limit to
the maximum link distance that we can measure. The col-
lection used for these experiments was obtained by start-
ing a a breadth-first crawl from each of 100 topic pages in
the Yahoo directory. Yahoo pages were used only as start-
ing points — the crawl was entirely outside of Yahoo.

Lexical similarity is measured by cosine similarity
(Eq. (3)) using TFIDF weighting with inverse document
frequency (Eq. (2)) computed from the collection of Web
pages crawled. Cosine similarity was computed between
each crawled page and the name of the topic where the
crawl originated.

The choice of starting points for the crawls in a Web
directory was driven primarily by the need to measure
semantic similarity between crawled pages and starting
pages. Even though crawled pages are not manually clas-
sified (making it impossible to use Eq. (6)), we can deem
a crawled page semantically related to the starting topic
if it links to one of the starting pages (which are assessed
as highly relevant to the topic by the Yahoo editors). This
idea is formalized below.

To obtain meaningful and comparable statistics at
δl = 1, only pages with at least 5 external links were used,
and only the first 10 links for pages with over 10 links.
Topics were selected in breadth-first order and therefore
covered the full spectrum of Yahoo top level categories.
Each crawl reached a depth of δl = 3 links from the start
page and was stopped if 10,000 pages had been retrieved
at the maximum depth. A timeout of 60 seconds was ap-
plied for each page. The resulting collection comprised
376, 483 pages. The text of each fetched page was parsed
to extract links and stemmed terms.

3.1 Lexical similarity versus link distance

The measurements were aggregated across all pages within
a maximum distance d ∈ (1, 2, 3) from a seed topic, for
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Fig. 2. Scatter plot of σ(t, d) versus δ(t, d) for topics t =
0, . . . , 99 and depths d = 1, 2, 3. An exponential decay fit of
the data and the similarity noise level are also shown. Data
from [18].

each of the 100 topics t:

δ(t, d) ≡ 〈δl(t, p)〉P t
d

=
1

|P t
d|

d∑
i=1

i · (|P t
i | − |P t

i−1|) (7)

σ(t, d) ≡ 〈σc(t, p)〉P t
d

=
1

|P t
d|

∑
p∈P t

d

σc(t, p). (8)

where P t
d = {p : δl(t, p) ≤ d}.

The 300 measures of δ(t, d) and σ(t, d) from equa-
tions (7) and (8), corresponding to 100 queries × 3 depths,
are shown in the scatter plot of Figure 2. Note that the
points are clustered around δl = 1, 2, 3 because the num-
ber of pages at distance δl = d typically dominates P t

d
(|P t

d| 
 |P t
d−1|). The two metrics are well anticorrelated

(correlation coefficient ρ = −0.76). The two metrics are
also predictive of each other with high statistical signifi-
cance (p < 0.0001). Such a strong correlation between link
and lexical similarity confirms our intuition that authors
tend to link pages with similar content.

To analyze the decrease in the reliability of lexical con-
tent inferences with distance from the topic page in link
space one can perform a nonlinear least-squares fit of these
data to a family of exponential decay models:

σ(δ) ∼ σ∞ + (1 − σ∞)e−α1δα2 (9)

using the 300 points as independent samples. Here σ∞ is
the noise level in similarity, computed by comparing each
topic page to external pages linked from different Yahoo
categories:

σ∞ ≡
〈

1
|P t′

1 |
∑

p∈P t′
1

σ(t, p)

〉
{t,t′:t�=t′}

≈ 0.0318± 0.0006.

(10)
Note that while starting from Yahoo pages may bias
σ(δ < 1) upward, the decay fit is most affected by the

0.1

1

0 1 2 3 4 5 6 7 8

σ

δ

edu (α1 = 1.11 ± 0.03, α2 = 0.87 ± 0.05)
net (α1 = 1.16 ± 0.04, α2 = 0.88 ± 0.05)
gov (α1 = 1.22 ± 0.07, α2 = 1.00 ± 0.09)
org (α1 = 1.38 ± 0.03, α2 = 0.93 ± 0.05)

com (α1 = 1.63 ± 0.04, α2 = 1.13 ± 0.05)

Fig. 3. Exponential decay of σ(q, d) versus δ(q, d) for each of
the major US top level domains. The model parameters, ob-
tained via a nonlinear least-squares fit of each domain data,
are shown with asymptotic standard errors. For α1, the dif-
ferences between com and every other domain are statistically
significant at the 95% confidence level. Extrapolated from data
in [18].

constraint σ(δ = 0) = 1 (by definition of similarity) and
by the longer-range measures σ(δ > 1). The regression
yields parametric estimates α1 ≈ 1.8 and α2 ≈ 0.6. The
resulting fit is also shown in Figure 2, along with the noise
level σ∞. The similarity decay fit curve provides us with
a rough estimate of how far in link space one can make
inferences about lexical content.

The crawled pages were divided up into connected sets
within top level Internet domains. The resulting sets are
equivalent to those obtained by breadth-first crawlers that
only follow links to servers within each domain. The rela-
tionship between δ(t, d) and σ(t, d) for these domain-based
crawls is plotted in Figure 3. The plot illustrates the het-
erogeneity in the reliability of lexical inferences based on
link cues across domains. The parameters obtained from
fitting each domain data to the exponential decay model of
equation (9) estimate how reliably links point to lexically
related pages in each domain. The parametric estimates
are also shown in Figure 3 suggesting that, for example,
academic Web pages are better connected to each other
than commercial pages in that they do a better job at
pointing to other similar pages. Such a finding is not sur-
prising considering the different goals of the two communi-
ties. This result can be useful in the design of topic-driven
crawling algorithms that prioritize links based on the tex-
tual context in which they appear; one could weight a
link’s context based on its site domain.

3.2 Semantic similarity versus link distance

To see how far semantic signals are carried across Web
links, consider the conditional probability that a page p is
relevant with respect to some topic t, given that page r is
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Fig. 4. Scatter plot of λ(t, d) versus δ(t, d) for topics t =
0, . . . , 99 and depths d = 1, 2, 3. An exponential decay fit of
the data is also shown. Data from [18].

relevant and that p is within d links from r:

Rt(d) ≡ Pr[relt(p) | relt(r) ∧ δl(r, p) ≤ d] (11)

where

relt(p) =
{

1 if p is relevant with respect to t
0 otherwise. (12)

Rt(d) is the posterior relevance probability given the evi-
dence of a relevant page nearby. Contrast Rt(d) with the
prior probability Gt ≡ Pr[relt(p)], also known as the gen-
erality of the topic, by defining a semantic likelihood fac-
tor :

λ(t, d) ≡ Rt(d)
Gt

. (13)

If λ(t, d) > 1, then a page has a higher than random prob-
ability of being about t if it is within d links from other
pages on that topic.

To estimate Rt(d) one can use the relevant sets com-
piled by the Yahoo editors for each of the 100 topics:

Rt(d) � |P t
d ∩ Qt|
|P t

d|
(14)

where Qt is the relevant set for t. In other words, we count
the fraction of links out of a set that point back to pages
in the relevant set. For Gt one can use:

Gt � |Q′
t|

|⋃t′∈Y Q′
t′ |

(15)

where all of the relevant links for each topic t are included
in Q′

t, even for topics where only the first 10 links were
used in the crawl (Q′

t ⊇ Qt), and the set Y in the denom-
inator includes all Yahoo leaf categories. Finally the mea-
sures from equations (14) and (15) were plugged into def-
inition (13) to obtain the λ(t, d) estimates for 1 ≤ d ≤ 3.

The 300 measures of λ(t, d) thus obtained are plotted
versus δ(t, d) from equation (7) in the scatter plot of Fig-
ure 4. Closeness to a relevant page in link space is highly

predictive of relevance, increasing the relevance probabil-
ity by a likelihood factor λ(t, d) 
 1 over the range of
observed distances and queries.

I also performed a nonlinear least-squares fit of this
data to a family of exponential decay functions using the
300 points as independent samples:

λ(δ) ∼ 1 + α3e
−α4δα5

. (16)

Note that this three-parameter model is more complex
than the one in equation (9) because λ(δ = 0) must also
be estimated from the data (λ(t, 0) = 1/Gt). Further, the
correlation between link distance and the semantic likeli-
hood factor (ρ = −0.1, p = 0.09) is smaller than between
link distance and lexical similarity. The regression yields
parametric estimates α3 ≈ 1000, α4 ≈ 0.002 and α5 ≈ 5.5.
The resulting fit is also shown in Figure 4. Remarkably,
fitting the data to the exponential decay model provides
us with quite a narrow projection of how far in link space
we can make inferences about the semantics (relevance) of
pages, i.e., up to a critical distance between 4 and 5 links.

4 Similarity correlations and maps

If we could design maps that, given coordinates based on
text and link analysis, told us the position of a document
or Web page in semantic space, then we could mine for
pages about a certain topic with great accuracy, estimat-
ing the meaning of a page from its observable text and
link cues — a golden goal for Web mining. This section
describes a brute-force approach to map the correlations
and functional relationships between the three topologies
discussed in Section 2 [19].

As a first step toward charting the semantics of the
Web, let us quantitatively analyze the relationship be-
tween content, link, and semantic similarity functions
across pairs of Web pages. First we want to study whether
these different similarity measures are correlated, and sec-
ondly we want to ask, given two pages with some lexical
and link similarity, what is the likelihood that they are
about the same topic.

4.1 Correlations of similarity measures

A set of pages representative of the Web at large was sam-
pled from the ODP, so that semantic information compiled
by human editors is available for each page sampled. After
filtering out certain parts of the directory tree for language
and classification consistency, 10 000 URLs were sampled
uniformly from each of 15 top level branches, resulting in
a final set of 109,648 URLs corresponding to valid HTML
pages in 47 174 topics. The pages were crawled, prepro-
cessed and stored locally for analysis. Then, for each pair
of pages I measured their content, link, and semantic sim-
ilarity as defined in Section 2. Cosine similarity (Eq. (3))
was measured using simple TF weighting. All three sim-
ilarity measures have values defined in the unit interval.
This was divided into 100 bins, resulting in a cube with
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Fig. 5. Correlation coefficients between similarity measures
across pairs of pages sampled from the Open Directory. Sum-
mary statistics are shown for all pairs and for 15 top level
branches of the directory tree.

106 bins. Similarity triplets were computed for almost
4 billion pairs of pages from the ODP sample. The data
thus collected allows for a number of interesting analyses.
Figure 5 shows that there are small positive correlations
between all pairs of similarity metrics. Given the very large
numbers of pairs, these represent weak but very signifi-
cant correlations. These numbers quantitatively validate
text and link analysis techniques for relevance estimation.

A few exceptionally strong correlations are found, for
example in the “Home” and “News” categories. The ma-
jority of “Home” sites are about recipes, which often link
to related recipes. For “News,” it is comforting that jour-
nalists seem to use words and links carefully, in a way
that helps discern their meaning. These results can be of
importance to designers of topical portals and search en-
gines: they indicate which types of analysis are most effec-
tive and which topics best lend themselves to specialistic
search applications.

4.2 Semantic maps

To visualize how accurately semantic similarity can be ap-
proximated from content and link cues, we need to map
the σs landscape as a function of σc and σl. There are
two different types of information about σs that can be
mapped for any given (σc, σl) coordinates: averaging high-

lights the expected values of σs and is akin to the precision
measure used in IR; summing captures the relative mass
of semantically similar pairs and is akin to the recall mea-
sure in IR. Let us therefore define localized precision and
recall for this purpose as follows:

P (sc, sl) =

∑
p,q

δc(p, q, sc)δl(p, q, sl)σs(p, q)

∑
p,q

δc(p, q, sc)δl(p, q, sl)
(17)

R(sc, sl) =

∑
p,q

δc(p, q, sc)δl(p, q, sl)σs(p, q)

max
s′

c,s′
l

∑
p,q

δc(p, q, s′c)δl(p, q, s′l)σs(p, q)
(18)

where p and q are dummy page indices, (sc, sl) is a coor-
dinate value pair for (σc, σl), and

δx(p, q, s) =

{
1 if σx(p, q) = s

0 otherwise.
(19)

Note that recall was renormalized by a constant factor for
improved visualization.

Figure 6 maps recall and precision over content and
link similarity coordinates across all pairs, and for pairs
within a few of the top level ODP branches. These se-
mantic maps provide for a detailed signature of the re-
lationship between text, links, and meaning. To properly
interpret the recall maps it must be noted that most pairs
have small values for all similarity measures (the individ-
ual similarity distributions are roughly exponential, each
peaked at zero). This makes sense since one would not
expect two random pages to be lexically similar, closely
clustered, or semantically related. The very small number
of pairs with high similarity values explains the weak sim-
ilarity correlations. Since the majority of pairs occur near
the origin, the same holds for most of the semantically
related pairs, thus recall is highest near the origin. How-
ever all this relevant mass is diluted in a sea of unrelated
pairs so that precision near the origin is negligible. This
creates an obvious challenge for search engines: achieving
high recall costs dearly in terms of precision, leading to
user frustration. While emphasis on precision is custom-
ary and reasonable for a search engine, the maps reveal
how costly this choice is in terms of recall.

The maps also demonstrate that there is significant
heterogeneity in semantic landscapes across broad topics.
While most of the semantically related pairs occurs near
the origin, there are noticeable local optima and ridges in
recall that extend away from the origin for several top-
ics. However the recall topology is different for each topic.
The topics with higher content-link correlation are those
for which more pairs extend away from the origin, and
therefore correspond to positive recall values toward high
content and link similarity. For topics such as “Home” and
“News” it is clear that semantic similarity is correlated
with both content and link similarity, making text and
links informative cues about page meaning. The “Adult”
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Fig. 6. Semantic maps of recall (left) and precision (right) for
pairs of Web pages in the whole ODP sample and within five
sample topics. Shades of gray encode the values of recall and
precision for each content/link similarity coordinates. Recall
is visualized on a logarithmic scale between 10−8 and 10−2,
precision on a linear scale between 0 and 1. White represents
missing data (no pairs).

topic is an exception. There is a large clique of adult sites
whose content and links are designed to boost their ranks
in search engines such as Google [20]. These engines rank
pages primarily by the link-based PageRank metric af-
ter selecting pages that contain the query terms. Thus
the lonely peak in the top right corner of the “Adult” re-
call map represents a single business effort rather than an
emergent property of independent sites.

On the precision maps one can generally distinguish re-
gions of high precision (shown in light gray) with various
sizes, shapes, and locations. The general map shows that
a universal search engine should concentrate on the high-
est link similarity among pages with medium-high content
similarity. Surprisingly, for very high content similarity
there is significant noise making it difficult to identify rel-
evant pages in this region via link analysis. This sheds
light on the low precision of the first generation of search
engines, based primarily on lexical similarity metrics, and
on the success of the newer generation of engines that ex-
ploit link analysis.

Topical precision maps differ significantly from each
other and from the general precision map. Most branches
have visible regions of high precision. For example sev-
eral topics such as “Science” have a hot region spanning
a wide range of content similarity but a relatively narrow
range of low link similarity. The “Home” topic has a sec-
ond hot region for high link similarity, corresponding to
the hot region seen in the general map. A couple of top-
ics (“Computers” and “News”) have large, well localized
high precision regions. These observations highlight how
diverse are the semantic inferences that can be drawn from
text and link cues depending on the topical context of a
search. These maps also suggest that identifying seman-
tically related pages with high precision is a hard search
problem due to many local optima. The optimal strategy
for one topic may not be applicable to different domains
or to the general case. Simple combinations of lexical and
link analysis result in both false positives and false nega-
tives because many high precision regions are isolated and
irregular [19].

An important lesson from these maps is that no single
approach will work best in the topical context of every
user’s information need. Search engine companies tend
to maintain a universal user base rather than focus on
specialized niche domains where the advertising revenues
would be smaller. Yet the semantic maps suggest that ef-
forts would be more fruitful if directed at supporting dis-
tributed, topic specific search services.

5 Growth models

Another way to visualize the connections between con-
tent and link information is to project the similarity data
cube onto one or two of its topological dimensions. In this
section I review the functional relationship between the
probability that two documents are linked, and their lexi-
cal distance [21]. This relationship has motivated a growth
model for document networks that generates accurate pre-
dictions for both link and content distributions in both
scientific articles and Web pages [22].

5.1 Link probability versus lexical distance

An interesting regularity was discovered by projecting the
distributional similarity data onto the content and link
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Fig. 7. Link probability versus lexical distance for Web pages
based on the ODP sample. A nonlinear least-squares fit of the
tail of each distribution to the power law model Pr(λ|κ) ∼ κ−γ

is also shown. Data from [21].

similarity axes [21]. The idea was to quantify the depen-
dence of link probability on content similarity (actually
lexical distance, defined from TF-based cosine similarity
via Eq. (1)). Since link probability is negligibly small and
thus hard to measure in a large sparse network, I con-
sidered instead the conditional probability that the link
similarity between two articles or pages is above some
threshold λ, given the two documents have some lexical
distance κ, as a function of κ:

Pr(λ|κ) =
|(p, q) : δc(p, q) = κ ∧ σl(p, q) > λ|

|(p, q) : δc(p, q) = κ| (20)

where p, q are two articles or Web pages. Figure 7 shows an
interesting phase transition observed from the ODP sam-
ple of Web pages. There are two distinct regions around
a critical distance κ∗ independent of λ. For κ < κ∗ the
probability that two documents are neighbors does not
seem to depend on their lexical distance. For κ > κ∗ the
probability decreases according to a power law Pr(λ|κ) ∼
κ−γ , where the decay exponent γ grows linearly with λ
(γ ≈ 6.4λ + 1).

5.2 Similarity based growth models

The empirical power law tail of Figure 7 quantifies how
the probability that two pages are linked decays with their
content similarity. The same analysis, with similar results,
was carried out for a collection of 15,785 articles published
in the Proceedings of the National Academy of Sciences
USA (PNAS) between 1997 and 2002 [22]. These results
suggests that authors use content information when cre-
ating hyperlinks in Web pages, or citations in articles. Yet
one does not find any reference to content in the recent
literature on growth models for scale free networks, in-
cluding the Web [3,23–26].

Most existing growth models are based on some form
of preferential attachment, whereby one node at a time is

added to the network with new edges to existing nodes se-
lected according to some probability distribution. In the
best known preferential attachment model a node i re-
ceives a new edge with probability proportional to its cur-
rent degree, Pr(i) ∝ k(i) [25]. This so-called BA model
generates networks with power law degree distributions,
in which the oldest nodes are those with highest degree.
The copying model and its extensions implement equiva-
lent rich-get-richer processes based on local walks, with-
out requiring explicit knowledge of degree [27–29]. To give
newer nodes a chance to compete for links, an extension
of the preferential attachment model is based on linking
to a node based on its degree with some probability or
to a uniformly chosen node with the remaining probabil-
ity [30,31]. Such a mixture model generates networks that
can fit the power law degree distribution of the entire Web
as well as the different distributions observed in subsets of
the Web such as university and business homepages [32].

All the above models are capable of predicting the scale
free degree distribution of Web pages and scientific arti-
cles, and the mixture model can predict non scale free
distributions as well. However, none of those models can
predict the distribution of lexical similarity across linked
documents (Web pages connected by hyperlinks and doc-
uments connected by citations). Too see why, consider the
distribution of lexical similarity across pairs of documents.
If one counts all pairs, the distribution is roughly expo-
nential: Pr(σc) ∼ 10−µσc where µ = 7 for Web pages [21]
and µ = 8 for PNAS articles [22]. The distributions
across linked documents, however, are qualitatively dif-
ferent. They have peaks at σc > 0 and decrease much
more slowly for σc → 1 [22]. One must conclude that con-
tent plays a role in the evolution of information networks.
Put another way, if one simulates the growth models in
the literature [25,27,32] using an exponential background
distribution for σc, the distribution of σc across linked doc-
uments generated by the simulations is also exponential
because σc is ignored by the models. This contradics the
data, leading to the same conclusion.

A simple growth model that accounts for lexical simi-
larity can be obtained by modifying the class of mixture
models. This class has a free parameter that can be tuned
to fit the data. At each step one new document is added
and m new links or references are created from it to ex-
isting documents. At time t the probability that the ith
document is selected and linked from the tth document is

Pr(i) = α
k(i)
mt

+ (1 − α) Pr(i) (21)

where i < t and α ∈ [0, 1] is a preferential attachment pa-
rameter. In the classic mixture mixture model Pr(i) = 1/t,
the uniform distribution [32]. Let us introduce an alterna-
tive degree-similarity mixture model in which

Pr(i) ∝ [δc(i, t)]
−γ =

[
1

σc(i, t)
− 1

]−γ

(22)

where γ is a constant. This model is inspired by the idea
that authors tend to link new documents to popular and
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Fig. 8. Distribution of content similarity among linked Web
pages and of degree (inset) predicted by simulating the two
mixture models. In the classic mixture model simulation α =
0.3, in the degree-similarity simulation α = 0.2 and γ = 1.7.
All parameters are set by matching or fitting the ODP data.
Data from [22].

related ones, and by the observation that link probability
between two documents decays for large lexical distance as
a power law Pr(λ = 0.1|κ) ∼ κ−γ where γ = 3.1 for PNAS
articles [22] and γ = 1.7 for Web pages [21] (cf. Fig. 7). The
free parameter α in the degree-similarity mixture allows
to explicitly model the tradeoff between linking to related
(similar) versus popular (high degree) documents.

5.3 Validation on Web and PNAS datasets

To validate the degree-similarity mixture model, the net-
works of Web pages and PNAS articles were built by sim-
ulation and compared to those obtained by simulating
the classic mixture model. Figure 8 shows the predictions
generated for Web pages. While both models accurately
predict the degree distribution, only the degree-similarity
mixture model reasonably approximates the similarity dis-
tribution of the ODP data.

The PNAS article data was analyzed analogously. Fig-
ure 9 shows the predictions generated by simulating the
growth of the article network according to the two mixture
models. Both models accurately predict the distribution of
citation counts, although the degree-similarity model fits
the PNAS data better. And again, the degree-similarity
mixture model generates a similarity distribution in re-
markable agreement with the data.

6 Conclusion

In this paper I reviewed a number of results that highlight
the strong connections between different topologies in the
Web and other document networks. These connections un-
cover a rich and complex relationship between the content
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Fig. 9. Distribution of content similarity among titles and
abstracts of articles that cite one another and of degree (inset)
predicted by the two mixture models. In the classic mixture
model simulation α = 0.5, in the degree-similarity simulation
α = 0.1 and γ = 3.1. All parameters are set by matching
or fitting the PNAS data (only references within the PNAS
collection are considered). Data from [22].

of documents, their meaning, and the network structure
that results from the links between documents created by
authors.

The focus of different communities on different topolo-
gies (for example, lexical topology in information retrieval
and link topology in statistical physics) may have hindered
our progress in understanding the complex dynamics that
govern document networks. For example, growth models
based on just one topology are not realistic but their fail-
ure is not obvious unless one tests their ability to predict
features related to different topologies. While search en-
gine companies are trying to analyze different sources of
evidence for identifying relevant documents, the scientific
communities must also come together to gain new insight
into the evolving structure of the Web and information
networks. This may lead to more effective authoring guide-
lines as well as improved ranking, classification, clustering,
and crawling algorithms.

The work reviewed here is currently being extended in
a number of directions. As discussed in Section 2, a bet-
ter semantic similarity measure is needed in order to take
full advantage of the complex network ontologies provided
by Web directories and classification schemes of digital li-
braries. We are currently studying a measure based on the
maximum flow between two nodes, with edge capacities
induced by node entropy.

It would be desirable to build a framework capable of
efficiently computing correlations and maps based on ar-
bitrary similarity measures. This way one could analyze
and combine a large number of lexical and link similarity
metrics to identify those that best approximate seman-
tic relationships. The work outlined here is limited by its
brute-force algorithm with quadratic complexity, which
does not scale well with larger document collections.
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The degree-similarity mixture model is being further
validated by testing its ability to predict additional prop-
erties of the networks, such as clustering coefficient and
degree correlation [6,29]. Finally, further insight must be
gained by studying the relationship between the mecha-
nism studied here (linking similar documents) and other
processes likely to play a role in the the evolution of
document networks, such as copying [29] and coauthor-
ship [5,6].
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